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Abstract

A study of error propagation for multicomponent analysis in the presence of

sample related interferences by the generalized standard addition method has been

made. The results of the examination have lead to an alternate experimental design

and optimal computation algorithms which are tested using a four component spectro-

photometric analysis. Additionally, the theory describes fundamental constraints

to multicomponent analysis in the presence of chemical, physical and spectral

interferences.



Since many methods of quantitative chemical analysis are not "fully selective"

(1), or, in other words, not free from interferences, important goals of the

analyst are to detect, characterize and, hopefully, eliminate interferences that

arise during the course of an analysis. Interferences that do not arise from

chemical species (e.g., electronic drift) in the sample clearly should be eliminated.

However, interferences (i.e., chemical, physical or spectral) arising from chemical

species in the sample can be regarded as "misplaced analytical signal" and it would

be best to sort these interferences during a multianalyte analysis. For example,

it is well known that when the 422.7 nm line is used for the atomic emission analysis

of calcium, the presence of sodium in the sample will cause an overestimation for

the quantity of analyte in the sample due to an interference. It is common practice

to apply a correction to the calcium signal based on the strength of the sodium

signal. However, this negative correction to the calcium signal ideally should be

accompanied by a positive correction to the sodium signal. In this way, the in-

fluence of sodium on the calcium line would not be wasted but would be correctly

sorted giving rise to a conservation of analytical signal and increased sensitivity.

Ideally, a method is clearly needed that can 1) detect interferences durin?

a multianalyte analysis, 2) mathematically characterize these interferences, no

matter how complex, and 3) sort all interference signals to al.ow the maximum

utilization of all analytical signals. This method would not only provide

more accurate multianalyte analyses but would also serve to characterize the

selectivity of the analytical instrument and therefore be an important aid for

analytical method development.

Recently, our laboratory developed the mathematical basis for just such a

method. It is based on the preferred method of standard additions and is a gen-

eralization to include any number of analytes. Hence it is referred to as the

Generalized Standard Addition Method (GSAM) (2) for simplicity. The GSAM is

applicable to sulticomponent analysis where interferences of any kind are a problem.
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This paper deals with the limitations of the linear model GSAM and the devel-

opment and testing of optimal computer algorithms and experimental designs for

carrying out multicomponent analyses using the GSAM. During the course of the

study, certain fundamental concepts and limitations to multicomponent analysis

were discovered. These concepts allow the analyst to calculate, in advance, the

penalty or cost of performing a multicomponent analysis when interanalyte inter-

ferences are present. This penalty takes the form of an amplification of the

measurement error as it is propagated to the final results (initial analyte con-

centrations and/or response constants). This theory should be of considerable

utility to the analytical chemist as it describes, quantitatively, the usefulness

of an analytical system and can even be used to compare and select systems. This

same theory has vastly improved our understanding of the characteristics of the

GSAM and has provided direction for the optimization of its application.

In the remainder of this paper, the linear response GSAM is briefly reviewed,

the theory mentioned above is described in detail, and the improvements given by

the theory are tested on a four component spectrophotometric analysis.

BACKGROUND AND THEORY

The Generalized Standard Addition Method - A Brief Overview

As any analyst knows, the standard addition method requires the measurement of

the analytical signal before and after addition of known quantities of the analyte

(standard additions) have been added to a sample. The analyte concentration is

found by extrapolating the regression line to the negative portion of the plot of

signal vs. concentration added (Ac). The model assumes that the analytical signal,

or more generally the response, RI is given by:

R ckt = (Ac + c.) k)

where Ac is the effective total concentration change of the analyte after any

standard addition, c, is the initial analyte concentration and k is the linear

response constant. Of course, if analytical signal, X, is responsive, again in a
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linear manner, to r components in the sample (interference effects), the true

response equation is:

r
Rt c sksk 2)

s-1

where cs is the concentration of the stb component and ksk its response

constant. For later use, it is most important to note that R. can be expanded

as:

r r
Rt - I Acks + I *csk s 3)

s-l s-l S

which simply says that the total concentration is the sum of each initial concen-

tration plus its change in concentration brought about by standard additions.

Now, for r analytes, p analytical responses (p > r) must be measured. Each

response can depend on any combination of the r components provided that each of

the r components (hereafter referred to as analytes as all r concentrations will

be determined simultaneously) affects at least one of the p responses. The GSAM

requires that n multiple standard additions (MSA's) be made so as to span the

r-dimensional concentration space (n > r). Expressing the above in matrix form

gives,

4)

whereR is the n x p matrix of measured responses to the n MSA's. £ is the n x r

matrix with the total concentration (Ac + c.) of the r analytes in each of the n

rows andL is the r x p matrix of constants relating the contribution of each of

the r analytes to the p responses. Note that many elements of can be near zero

if interferences are not present.

The solution for K is given in

reference (2) to be,

her CT - nn1  T

where AG Is an n x r matrix of total concentration changes for r analytes
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at each of n MSA's. Given K, the column vector of initial analyte concentra-

tions, can be found by

T - L&T I, LL (oR 1 , .. , oRr)T 6)

It is very important to recognize that jC in equation 5 is the matrix of

effective total concentration changes for each analyte after the MSA's and, unless

volume changes are negligible, Z cannot be known since the initial concentrations

are unknown. In practice, this is not a problem as simple volume corrections

convert concentrations to absolute quantities (e.g., moles).

Equation 2 can be rewritten,

Rtin Nr 7)
sIl V

where N is the total number of moles of analyte s in a volume V. This leads to
s

r

QX VR, s k 8)

which can now be separated,

r r

Q I ANk s + I oNsks 9)
s=l s=1

ON is the initial number of moles for analyte s and AN in the total amount of
5 5

analyte s added which is now known. Hence, for equation 4, if all responses at all

MSA's are volume corrected, C is the matrix of amounts expressed in moles and the

solution can proceed as in reference 2. The solutonYLof the overdetermined system

o10)

is now

Y, AT -N)l T 11)K - (ANT AN)- AN A

with AN expressed in total changes of quantitites and equal to the matrix of

volume corrected response changes.

The GSAM requires that MSA's be made prior to each of the n measurement steps.

One NSA may consist of the addition of one standard or several standards. The MSA's

are attempts to span an r-dimensional concentration
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space. If the linear model holds for the simple standard addition method (one

analyte) the method of additions is clear (3). Unfortunately, this is not the

case for the GSAM.

The goal in this study was to determine the optimal method of performing the

multiple standard additions. "Optimal" meaning the lowest errors in the determina-

tion of K andn_

The accuracy of the determination of n,, the vector of initial amounts of all

the analytes, is dependent on at least five items.

1) The accuracy of each response is of paramount importance and represents a

limiting condition as in any quantitative analysis.

2) With the GSAM, the multiple standard additions must be made without deter-

minate error and with acceptable precision. Again, this is true of any analysis

regardless if calibration or standard addition methods are used.

3) The third item deals with interferences which can be described using math-

ematical properties of the K matrix to be explained later.

4) The experimental design, as might be expected, can strongly influence the

accuracy of K and hence no.

5) The mathematical algorithms selected for computation can effect the results

due to round-off errors. This will be clear in the following.

The emphasis of this paper is item 4. However, in a search for better ways to

implement the GSAM, much has been learned about all five items and a more fundamental

understanding of multicomponent analysis has been the result. This paper describes

the manner in which measurement accuracy (item 1), experimental manipulation involved

with calibration (item 2) and interferences (item 3) influence chemical analyses,

and how the way in which the analyses are performed (item 4) can alter these

influences and the results calculated (item 5).

Error Propaaation

After computation of the K matrix, the desired initial quantities (the com-

ponents ofA) are obtained by solving

T q. 12)
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If the Lmatrix is well conditioned (i.e., the analytical sensors are very

selective) any linear equation solver may be applied to equation 12. If not

(i.e., the columns of are nearly linearly dependent), Househoulder's triangular

decomposition (see Appendix) should be preferred in order to at least guarantee a

minimum of numerical rounding errors (item 5 above). Nevertheless, the magnifica-

tion of experimental errors may be crucial.

The experimental application of the GSAM is as subject to experimental errors

as any measurement procedure. These errors may be propagated twice: first,

in determining thel matrix by solving the least squares problem and, second, in

solving the linear system 12 using the calculated K matrix. The sensitivity of the

solution of a numerical problem with respect to errors (i.e., the size of the

error magnification factor) is usually called the condition of the problem. Even

in the linear case the relative data error may be magnified by a factor which

can lead to completely unreasonable results. Hence, a very careful analysis should

be applied to the sensitivity of the final result n. with respect to instrumental

and performance errors and, consequently, to the optimal design of the addition

matrix AN.

Error amplification can be shown by a simple but illustrative example. Assume

the following two by two system of linear equations, Ax - b, is to be solved,

3.56 -1.92) -xl 20.0C) 13)
(1.92 2.44 2 15.0)

The solution is x - (-4.0, 3.0) as is easily verified. Now suppose the right-hand

side, is perturbed by the error vector 6b - (0.3, 0.4)T which produces a relative

error II II /JI I of 2%. (II II square root of sum of squares of vector elements.)

The corresponding solution x -m + to + J is j6- (-3.7, 3.4) which

corresponds to a relative solution error I11 11 /1lj of 102. Thus an error amplifi-

cation factor of 5 results. To put this result in a more general context the intro-

duction of the norm of a matrix is required.
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For a matrix AO1Rn r, the number

I I Ax 112A112  lu II-I12 A.1- lI~r!I2 (lub means lowest u per bound)

_,,R 
14)12 

l~ 11-

will be called the Euclidian norm (or simply norm) of A. The square roots of

the eigenvalues of the positive definite matrix ATAcIrr are

called singular values of A. In the case where n=r and A is normal (i.e.,

.- AA T) the singular values are the absolute eigenvalues of A (e.g., all

symmetric matrices are normal). It is well known that the biggest and the re-
ciprocal smallest singular values of A are equal to the norms of A and 1

respectively (4).

11All - ait 11'c-'l .1 = a- 15)

Using the same notation as before and starting with equation 12 where K, the

matrix of response constants, is assumed known exactly for now, and q. is the

vector of initial volume corrected responses, a useful result can be found.

It is known that

1II. 11 _ II.TII II _ll 16)

If K-1 exists, as it must in chemical analysis, then

S( KT ) -  q. 17)

Now, a small change in q., represented by 6q., gives rise to an error 6n0 ,

which must be kept small in a chemical analysis. Since,

T -1 66. %T )- l9
II 6n11I _ II T)-lII • IItr f 19)

Combining 16 and 19 and using II T)- 1 II lIII give

I .:<IIII 4IIIlK II~ ll II oi..ll
-1 11 I 20)

Defining the condition number of any nonsingular matrix A as

-ond (A "-1 21)
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and using the fact that cond (A) - cond (AT) the final result is

11II Sn, II qi
< cond (K) * 22)

The condition number can have different values depending upon the chosen norm. It is

always greater than one and herein lies an important result. If qo is the true

response vector that gives rise to the true analyte vector no, then 22

shows that a small error in response 6q. can be magnified by cond (,W in the worst

case to produce a greater relative concentration error; error amplification.

All of the above relates to the third item mentioned in the introduction. The

analyst selects a particular analytical method characterized by the matrixK the

response constants of the method. Inequality 22 characterizes the "cost of inter-

ferences" in the method. The cost is paid in increased relative uncertainty in the

initial concentrations to be determined. The ideal case of fully selective sensors

(no interferences) with equal sensitivity gives rise to a. matrix with a condition

number of one and absolutely no error amplification.

During an actual application of the GSAM, the K matrix is determined as the

solution of an overdetermined linear system and therefore is not known exactly.

Hence, the propagation of errors due to the K matrix must be examined. The

following similar error estimate taking matrix entry errors into account can be

found in reference 4, P. 195:

cond -
E

___M_ < ~I 23)llIl1 1 IIi
1-cond -

where x is the solution of the perturbed system A+ F , whose error matrix E

has to be sufficiently small (II I < 1).

Using 23 and 22 (by a Taylor expansion neglecting higher order terms) the

combined error estimate is obtained

Sn4 < cond [ ].i + i 1 24)
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Now, to estimate the second term in the brackets a sensitivity analysis of the

generalized solution of equation 11 with respect to experimental error amplification

must be done. It is considerably more complicated, whence only the final inequalitie

are cited here. For details the reader is referred to (4, 5, 8). The first estimate

analogous to equation 22 (transcribed to this paper's notation) can be found in

Reference 4, p. 221, to be,

< cond . 25)

II 11 - IAqIjJ

where cond (AN) I NIIJIN I is now the generalized condition number of AN and
Aq and Aq are the projections of Aq and A onto the range of AN. The generalized

condition of the rectangular matrix AN may be computed by the formula

cond (AN) = [cond (ANT 1N)/2 26)

where the number in brackets denotes the usual (see equation 21) condition of the

square matrix AN TAN.m

Further generalizations are not only beyond the scope of this paper but are

actually unnecessary for achieving our goals. The analytical chemist is not usually

interested in calculating upper bounds on the relative errors of initial concentra-

tion vectors. Actually, statistical error propagation, the subject of other work

in our laboratory, is usually of greater interest. Rather, the forms of equations 24

and 25 are far more important as they show the dependence of analytical accuracy,

Ing, on measurement accuracy, -, interferences, cond K , and the experimental

design, condN). Functional dependence of item two is covered in the Appendix, itq

effect being a bit more complex. These dependences demand that measurement errors

be small, interferences be few and small [cond WK close to one], multiple standard

additions be made as accurately as possible (Appendix) and that the experimental

design lead to the smallest cond (W as possible. The first three demands are not

unknown to the analytical chemist. But the final demand has guided this work to the

experimental designs proposed in the following section.
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Suggested Variants of the CSAM

The sensitivity of the initial quantities, no, is highly dependent on the

condition of AN and, thus, on the experimental design of the GSAM. In order to

minimize the error propagation factors two variants of the GSAM, as presented in

the original paper, are now suggested for use.

The original CSAM method used the total difference calculation and does not

differ in experimental design from the now suggested incremental difference calcula-

tion. Rather, the difference lies only in the definition of AN and, correspondingly,

of AQ. The entries in the AN matrix for the total difference calculation are the

accummulative amounts of standards added. For the incremental difference calcula-

tion, the entries are just the amounts added at any one MSA. Likewise, the AQ

entries for the total difference computation are the total changes in response from

q, and only the stepwise incremental response changes for the incremental difference

computation.

The second variant procedure, called the Partition GSAM, or PGSAM, amounts to

a true change in experimental design. The sample is first split into as many

partitions as there are analytes. (In practice, the analyst would begin with r

aliquots of the sample.) Then, for each partition, all of the responses are measured

before and after standard additions of only one standard per partition.

As will be seen in a later section, the condition of. for the incremental

difference computation GSAM and the PGSAM is unity amounting to no error amplification

for either variant. (Actually, this is true only when identical quantities of each

standard are added or ANis scaled in a manner to be described later.) The normal

GSAM is performed in one vessel and the PGSAM requires multiple vessels. In most

cases, the GSAM would be preferred but if, for example, additions of several different

standards to a single sample leads to changes in the k sl' (equation 3), this model

nonlinearity may be avoided by employing the PGSAM. Experimental considerations

can now dictate which procedure to use and the sensitivity of the sensors can

dictate the amount of each standard to use for any one MSA.
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EXPERIMENTAL

Reagents:

Four aqueous solutions of 0.01 M NiCl2, 0.01 M CuCI 0.01 M COC1 and

0.002 M K2Cr 0 (all A.C.S. Reagent Grade) were used to serve as standards for2 2 7

the additions and to prepare the "unknown" mixture consisting of 1.0 ml each of

the NiCl2, CuCl 2 and CoCl 2 standard solutions. Standard additions were made in

units of one ml of the respective solutions or 1.0 x 10- 5 mole of NiCl 2, CuCl2, CoCl 2

and 2.0 x 10- 6 mole K 2Cr2 07

Apparatus:

A Cary 219 spectrophotometer was used for all measurements. The responses

measured were the absorbances of every solution at five wavelengths. The wave-

lengths corresponded to absorbance peak maxima for each of the four analytes with

a second peak maximum for nickel included. Wavelength were assigned as follows:

X1 .351.0 nm (Cr207 2-), X2  394.5 nm (Ni 2+), X3 - 511.5 (Co 2+), X4 = 660.0 nm

(Ni 2+), X5 = 820.0 nm (Cu 2+).

Procedure:

A: (GSAY) 16 additions, 4 for each analyte, were added to the unknown mixture in

the following order: 4 times 1 unit of NiCl2 ; 4 times 2 units CuCl2 ;

4 times 4 units of CoCl2 ; and 4 times 8 units of K2Cr207. After each

addition the absorbances at all five wavelengths were recorded.

B: (PGSAM) Four equal aliquots of unknown mixture.

To the first aliquot 4 additions of 1 unit NiCl2,

to the second aliquot 4 additions of 1 unit CuCl2,

to the third aliquot 4 additions of 1 unit CoCl2, and

to the fourth aliquot 4 additions of 1 unit K2Cr207, were made.

After each addition the absorbances of the respective partition at all five

wavelengths were recorded.

Computer Program:

All programs are written in Fortran IV and are available from Infometrix,

Inc., P. 0. Box 25888, Seattle, WA 98125.



12

RESULTS AND DISCUSSION

The experimental goal was to corroborate the theoretical considerations

according to possible addition techniques. Hence, an experiment was selected

that was easy to perform and that allowed the testing of different addition

matrices on an instrument with a large and linear dynamic range. One experiment

that meets these requirements is the determination of the concentrations of

inorganic ions in a mixture by visible light spectrophotommetry. As described in

the Experimental Section, two procedures were used to perform the experiment:

the standard GSAM and the sample partition GSAM or PGSAM.

The results were calculated in two different ways; the total difference

computation and the incremental difference computation (TDC and IDC). During

the experiment the responses (absorbances) at 5 different wavelengths were

measured although only four would have been necessary since an unknown mixture

consisting of only four analytes was considered. This was done to obtain different

&matrices using different combinations of selected wavelenths in order to

compare results. Of course, a generalized inverse solution for the initial quant-

ities starting with equation 12 can be used when r > p.

In a real analytical sample the analyst is faced with possible large differences

among the initial analyte concentrations and varying sensitivities among the

transducers used to obtain the analytical responses. Therefore, the concentration

changes made for each analyte may be quite different in magnitude. This necessary

element of the experimental design produces large differences in relative magnitudes

among columns of." leading to artificially increased condition numbers. To get

the smallest possible condition number for a certain addition matrix AN and thus

the smallest error estimate of the K matrix the addition and response matrices were

scaled such that,

r2
11 (Anij) 1 i - 1,...,n. 27)
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Table I shows the addition matrix and the five volume corrected response columns

of the TDC before scaling. Note that the additions are summed since the total

change in the response was observed with respect to the initial responses. Since

the additions are given in above defined units, the results are also given in the

same units. Also, unequal amounts of each standard were used for the additions.

Although this experimental design may not be ideal from the experimental or

statistical point of view, it gives a smaller cond (AN) for the total difference

GSAM than equal additions, a fact that easily can be verified by the reader.

Table II gives the data for the incremental difference computation. Note that

the addition matrix now consists of only the additions made at one time and the

response matrix consists of only the changes of the responses with respect to the

response before each addition was made. The scaled ANT matrix is therefore a

diagonal matrix with condition number one.

Likewise, Table III shows the results for the sample partition method, PGSAN.

The addition matrix, AN shows that amounts are again accumulative but only within

a single sample partition per column. Besides the experimental advantage mentioned

above, the use of the PGSAM has the additional advantage that the scaled ANTAN

has a condition number of one. The major disadvantages of the PGSAM are the

extra amount of sample required and the manipulation necessary when a sample is

partitioned which can introduce additional experimental error. In the present

experiments, the normal GSAM results were obtained using only one pair of cuvettes

for the spectrophotometer. One reference cuvette and four sample cuvettes, one

for each partition, were used for the PGSAM. Thus the errors associated with

volume transfers and cuvette positioning in the instrument were compounded by the

use of more experimental equipment.

Formally, the first calculation step in the GSAM is the determination of K.

Since J, results for the TDC-GSAM, IDC-GSAM, and the PGSAM were nearly identical, on11

theA matrix for the IDC-GSAM for each of the two selections of wavelengths is

given. Table IV shows the experimentally determinedA for the "most selective"
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combination of wavelengths. Although none of the wavelengths are fully selective

for any one element, only one wavelength (X2) represents a serious interference

problem. The resulting error amplification limit [cond (L] is slightly less than

a factor of two. Table V shows the K for a less selective combination of wavelengths

reflecting more sericus interferences and a much larger error amplification factor

[cond (K)].

Table VI gives the final results for the TDC-GSAM, IDC-GSAM, and the PGSAM

for the most selective combination of wavelengths and only the IDC-GSAM for the

less selective combination of wavelengths. The result for the second group of

wavelengths paralleled the results of the first group and are not reported here

for brevity. The eigenvalues and condition numbers are all as expected. The first

three estimates of cond J are essentially equivalent reflecting only experimental

error of the estimates of the K matrices pointed out above. The last cond W is

larger and quantitatively estimates the potential cost of performing the chemical

analysis with a less selective analytical system.

The interesting results for the analytical chemist come at the bottom of

Table VI. The most accurate results using the first group of wavelengths is

achieved with the application of the IDC-GSAM. Its average absolute % error of

1.33% is quite close to the precision limit (est. 1%) of the instrument used for the

range of absorbances measured. This result also points out a strength of the GSAM

that can be understood by a closer examination of Table I. Since the1 values

are volume corrected, a group of four values in a column corresponding to the

addition of equal amounts of any one standard should, ideally, be equal. They are

not equal because measurement and addition errors, in some cases, vary widely.

Using as true values the averages of the four sets of values corresponding to the

changes in the primary spectral peak for each of the four analytes, statistical

standard error estimates of 4.3%, 2.6%, 7.1% and 3.5% are calculated. These

standard error estimates are much greater than the standard error estimates in the

final concentration values (bottom line of Table VI) which simply demonstrates the
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statistical equilibration obtained by multiple measurement in the presence of random

error.

The 1.3% result for the IDC is a significant improvement over the 3.3% average

absolute error obtained using the same raw data but using the TDC. The most

obvious explanation for the poorer result of the TDC is the error amplification

suffered as a consequence of the higher condition nunber of rLwith the TDC. A

rationalization, untested by these experiments, is that the TDC uses q. to

calculate each row of aAwhereas the IDC uses each measurement to calculate no more

than two rows of. Since q, in the present case contains values nearest the

sensitivity limit of the instrument (lowest concentrations), they could contain

the largest errors and have a compounded effect on the final results with the TDC.

The overall accuracy of the PGSAM lies intermediate between the TDC and the

IDC. Its result is better than the TDC, most probably because of its lower error

amplification factor [cond AN) = 1.03. It is poorer than the IDC, most

probably because of experimental considerations explained earlier.

The errors obtained by the IDC using the second group of wavelengths are sur-

prisingly low considering the K obtained and its condition number (Table V).

The same is true for other, even less selective, wavelength combinations that

allowed concentrations to be calculated at the cost of analysis accuracy.

Finally, as a direct result of using the Househoulder method, a more detailed

error analysis (see Appendix) was obtained and is given in Table VII. The present-

ation of these results (see estimate 45, Appendix) allows an understanding of how

each source of error, standard addition error Q§) and measurement error (Ag),

influences the determination of each row of.,and hence the final concentrations.

In each case, the generalized condition of. dominates the coefficient of the err

QU) term to give that term a greater influence than the influence of the err (A)

term. This is especially true of the TDC method. According to 45 (Appendix),

Table VII indicates that the PGSAM has the predicted advantage over the normal GSAY

even using the IDC. However, for reasons given earlier, use of the PGSAM may indeed
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lead to higher values for err (Aq) and perhaps even err (g as was most certainly

found to be true here.

CONCLUSION

In this paper the theoretical basis for the constraints on multianalyte

analysis in the presence of sample related interferences has been investigated.

The detailed error estimation afforded by the Househoulder method and exploita-

tion of the properties of matrix and vector norms have lead to improvements to

the GSAM as published in an earlier paper (2). These include:

1) A new definition of the problem to be solved (the IDC-GSAM) and a scaling

method (equation 27) together yielding a vastly reduced error propagation for the

determination of.

2) A new experimental design (the PGSAM) with desirable error propagation

properties.

3) A single quantity, the cond (K), that can be used to, quantitatively,

compare two analytical methods designed to perform the same multicomponent

analysis.

Finally, a more quantitative understanding of the limitations faced by the

analytical chemist has been achieved. Armed with a collection of "fully selective"

sensors, the analyst can use the simple standard addition method to perform an

analysis for several analytes on a complex sample with absolutely no amplification

of the measurement uncertainty as it is propagated through the mathematical methods

to the initial analyte concentrations. Using the appropriate variation of the

Generalized Standard Addition Method the analyst can now perform the same analysis

with "non-selective sensors" and also minimize the effect of error amplification

in the determination of the linear response constants, K, and the initial analyte

amounts, n., or concentrations, c.. Additionally, with an approximation (from

analysis of a previous sample or standard) of the selectivity of the analytical

system as expressed byK, the analyst can determine, in advance, the cost of

non-selectivity in units of error amplification limits. In some cases the cost
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might be high enough to force the analyst to conclude that an analysis with a

desired accuracy may be futile.
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APPENDIX

Improving Numerical Stability

Mathematically, equation 10 represents a system of n linear equations with r

right-hand sides Aql,...,Aqr (being the columns of AQ) corresponding to the r un-

known colums k1,...,k of K. As the number of additions normally exceeds the

number of analytes and sensors, this system, being overdetermined, will aenerally

have no exact solutions since the right-hand sides, Aql,...,Aq , involve randomly

distributed measurement errors. Therefore, generalized solutions, ki, yielding an

optimal fit to equation 10, in a certain sense to be defined, must be found.

In the following, the column subscript j of kj and qj is suppressed fixing an

arbitrary index lj<r to give,
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8Nk A6NmnR 28)

For any vector xc]Rn, its Euclidian norm, Jjx 11 , is defined by

nI2 1/2 T 1/2xi) (.x29)

A vector k will be called a generalized (or least squares) solution, in numerical

analysis jargon, of equation 28 if it minimizes the defect of equation 28, i.e., if

- -I2 - mn I jx- 12 30)

r

Minimizing the defect of a linear system with respect to the Euclidian norm is well

known as linear regression and leads to the so-called normal equations,

QTQ T 31)

which are derived by partially differentiating the function

1 U32)

T T T
SANTANx - 2xTAN + 6q

and by setting the partial derivatives to zero. The normal equations have a unique

solution k if and only if AN has full rank r in which case L is formally given by

T -1LN TAq. 33)

T -1 T
The matrix N L) Al is called the generalized (or Moore-Penrose) inverse of

The reader should keep in mind that the definition of a generalized solution,

is based on the special choice of the Euclidian norm which is reasonable in the

case of normally distributed, random perturbations of the right-hand side

entries Aq (6). In the case of non-normally distributed errors, the

L -norm

n

11111~ x 1 134)IIAi Ill -i lxil 3I
Iml

is an appropriate function to be minimized (7), i.e.,

r 35)
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Equation 28 might also be poorly conditioned meaning heuristically that a small

relative error of the right-hand side, A, produces a large relative error of the

solution vector k. In that case there may appear large negative components of

[, which can be prevented by minimizing equation 32 under the regularizing con-

ditions kii > 0 (non-negative least squares (ref. 8, Chap. 23). Also a combination

of the L1-norm and the non-negativity conditions might be reasonable.

In the following, consideration is restricted to the simpler problem (equa-

tion 30) which can be solved by a very effective numerical algorithm allowing a

transparent and useful error analysis. Therefore, the subscript of the norm is

suppressed writing 1X l instead of II,2 .

At first sight, the most obvious way to compute the generalized solution of

equation 30 is to solve the normal equation 31. In fact, if AN has full rank,

then._NT is positive definite, and almost any algorithm appropriate for positive

definite linear systems (e.g., Cholesky's algorithm) may be applied. From the

point of view of numerical stability, however, it is well known (4,8) that

Househoulder's orthogonalization is highly preferable in most cases. In addition,

Househoulder's procedure provides, as a by-product, some useful information for

an a posteriori error estimate to be discussed in the next section. A short out-

line of the algorithm follos:

A square matrixCRr 'r is called orthogonal, if its columns span an ortho-

normal basis of 3R (i.e.s TL D. The product of orthogonal matrices is

orthogonal. Multiplication of a vector Ar by an orthogonal matrix £ does not

change its Euclidian length. Therefore, solving the minimization problem (equa-

tion 30) is equivalent to solving

IIZ - Z II" ' I1 N -Z II
xCR 

r3

for any orthogonal matrix P. Now, a matrix P of the form
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T T r
- - a , W-1, m 37)

is easily shown to be orthogonal and symmetric. To a given vector je r r can

be chosen in a way that

P, =Xe XcR, . - (e,0,...,o) Er. 38)

Taking the first column of AN for x in the first step and writing P for P the
- 1

product PlQ has the form
-' .0 *.... * N1

*! o
: 39)

PAN- S E AN

•l* *

the stars denoting arbitrary entries. Applying the same procedure as indicated

above (leaving the first column unaffected) to the submatrix, S, produces, after

r-l multiplications by orthogonal matrices Pl,...,Pr-l' a matrix of the form

i4p w *. N- 40)
r-1l I I-

where j is upper triangular. Now equation 36 can be written as

II ,. jl - min I12x - ,,,.tal 41)
/ Wx

ECRr 0

Partitioning the vector PAq analogously to PAN one obtains for equation 41

-- - - - i 42)

the solution of which is

Wk - h - 0q44Wk -h
mm 43)

As is triangular, k can be calculated explicitly from equation 43 provided A

has full rank (in which case j is nonsingular). The minimal norm of the defect

according to equation 42 is
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IIM 1 I I 44)

Since equation 28 and respectively equation 30 must be solved for r right-hand

sides Aq ,...,Aq, the orthogonal transformationsgAql,.. .PAq should of course be
- - r

performed simultaneously with the transformation of AN.

Error Estimation

An informative error bound estimate is given by Reference 5, p. 177. It

considers matrix errors and is deduced by Taylor expansion neglecting higher order

terms:

errS) < [condO) + cond(X)2  __ _ ]err (AN) +

11 Aqj 
45)

condL) _ err (Aq),

II , II 111 11
where the relative error of a quantity, a, errW

i
the bar indicating the perturbed values. W and h2 are the terms appearing in the

Househoulder algorithm (see equations 43, 44). Since multiplication by an ortho-

gonal matrix leaves the norm of a vector invariant, the norm of AN is easily

calculated in terms of W:

IIII = maxlI Nx1 " maxIIP xI11 - maxIIjjiII -11II11
I1 11 -l I1 11 -i I1 1J1 46)

As W is a small triangular matrix the computation of its condition and its norm by

determining its singular values is easier. Very popular (but not always realistic)

estimates of IIw I and cond Qj) are given by the following formulas:

max wl

I1w11 > max Iwij ; cond W > Ij47)

i,j l,...,r min w i
i

Thus using the Househoulder algorithm, the terms appearing on the" right hand side

of 45 are obtained as an easily calculable byproduct allowing the determin-

ation of an upper bound for the error entering the columns kl,...,k of theK

matrix.
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TABLE I

Experimental Design ( and

Responses (AQ) for the TDC-GSAM

N2 Cu Co Cr207 Aq(X 1) Aq(X 2) Aq(X 3) Aq(X4 ) Aq(X5 )

1.00 0.00 0.00 0.00 0.0422 0.491 -0.010 0.174 0.058

2.00 0.00 0.00 0.00 0.0822 0.979 -0.012 0.345 0.093

3.00 0.00 0.00 0.00 0.0151 1.48 0.004 0.532 0.198

4.00 0.00 0.00 0.00 0.209 1.99 0.018 0.723 0.266

4.00 2.00 0.00 0.00 0.265 1.98 0.005 1.11 1.81

4.00 4.00 0.00 0.00 0.326 2.00 0.002 1.49 3.28

4.00 6.00 0.00 0.00 0.413 2.00 0.017 1.89 4.88

4.00 8.00 0.00 0.00 0.507 2.04 0.044 2.31 6.44

4.00 8.00 4.00 0.00 0.565 2.16 1.99 2.41 6.52

4.00 8.00 8.00 0.00 0.502 2.17 3.85 2.45 6.39

4.00 8.00 12.00 0.00 0.606 2.32 5.77 2.59 6.61

4.00 8.00 16.00 0.00 0.733 2.54 7.80 2.75 6.70

4.00 8.00 16.00 8.00 6.71 4.22 7.87 2.71 6.57

4.00 8.00 16.00 16.00 12.6 5.85 7.90 2.61 6.18

4.00 8.00 16.00 24.00 18.9 7.70 8.06 2.65 6.38

4.00 8.00 16.00 32.00 25.4 9.99 8.45 2.92 6.58



25

TABLE II

Experimental Design ( and

Responses (A) for the IDC-GSAM

Ni Cu Co Cr207  &q(Xl) Aq(X 2) Aq(X 3) Aq(X 4) Aq(X5)

1.00 0.00 0.00 0.00 0.042 0.491 -0.010 0.174 0.059

1.00 0.00 0.00 0.00 0.040 0.488 -0.001 0.172 0.035

1.00 0.00 0.00 0.00 0.069 0.497 0.016 0.186 0.105

1.00 0.00 0.00 0.00 0.058 0.516 0.013 0.191 0.068

0.00 2.00 0.00 0.00 0.056 -0.007 -0.012 0.382 1.54

0.00 2.00 0.00 0.00 0.060 0.018 -0.003 0.388 1.47

0.00 2.00 0.00 0.00 0.087 -0.008 0.015 0.399 1.60

0.00 2.00 0.00 0.00 0.094 0.048 0.027 0.419 1.56

0.00 0.00 4.00 0.00 0.058 0.115 1.95 0.103 0.079

0.00 0.00 4.00 0.00 -0.063 0.015 1.86 0.034 -0.129

0.00 0.00 4.00 0.00 0.104 0.152 1.92 0.144 0.223

0.00 0.00 4.00 0.00 0.128 0.21S 2.03 0.154 0.089

0.00 0.00 0.00 8.00 5.98 1.67 0.075 -0.039 -0.125

0.00 0.00 0.00 8.00 5.93 1.63 0.026 -0.098 -0.389

0.00 0.00 0.00 8.00 6.27 1.85 0.165 0.036 0.192

0.00 0.00 0.00 8.00 6.50 2.30 0.389 0.275 0.202
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TABLE III

Experimental Design Q) and

Responses (AQ) for the PGSAM (TDC)

Ni Cu Co Cr207  Aq( 1) Aq(X 2) Aq(X 3) Aq(X 4) Aq(X 5)

1.00 0.00 0.00 0.00 0.078 0.513 0.026 0.193 0.103

2.00 0.00 0.00 0.00 0.100 1.00 0.010 0.363 0.129

3.00 0.00 0.00 0.00 0.172 1.52 0.029 0.552 0.292

4.00 0.00 0.00 0.00 0.220 2.02 0.025 0.732 0.286

0.00 1.00 0.00 0.00 0.031 -0.006 0.001 0.200 0.799

0.00 2.00 0.00 0.00 0.072 0.013 0.010 0.393 1.52

0.00 3.00 0.00 0.00 0.108 0.021 0.019 0.596 2.31

0.00 4.00 0.00 0.00 0.166 0.039 0.028 0.803 3.09

0.00 0.00 1.00 0.00 0.010 0.023 0.495 0.028 0.035

0.00 0.00 2.00 0.00 0.036 0.050 0.962 0.047 0.019

0.00 0.00 3.00 0.00 0.020 0.080 1.45 0.078 0.058

0.00 0.00 4.00 0.00 0.019 0.104 1.94 0.100 0.066

0.00 0.00 0.00 1.00 0.718 0.197 0.011 -0.002 0.005

0.00 0.00 0.00 2.00 1.51 0.435 0.026 -0.004 -0.030

0.00 0.00 0.00 3.00 2.22 0.642 0.035 -0.003 -0.009

0.00 0.00 0.00 4.00 3.07 0.891 0.048 -0.005 -0.018
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TABLE IV

K Calculated by IDC-GSAM Using Wavelengths

A' 2' X 3' x5" Cond W = 1.93

A1 2 x3 5

Cr 0.76 0.23 0.02 -0.01

Ni 0.05 0.49 0.00 0.06

Co 0.08 0.02 0.48 0.01

Cu 0.04 0.01 0.01 0.77
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TABLE V

K Calculated by the IDC-GSAM Using Wavelengths

XVl X31 A4,A Cond -5.24

1 A3  A4  A5

Cr 0.77 0.02 0.01 -0.01

Co 0.01 0.48 0.03 0.02

Ni 0.05 0.01 0.18 0.07

Cu 0.04 0.01 0.20 0.77
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TABLE VI

Final Results

TDC-GSAM IDC-GSAM PGSAY IDC-GSAY

Generalized Cond N) 3.42 1.0 1.0 1.0

Eigenvalues of K TK 1 0.701 0.723 0.700 0.666

2 0.586 0.585 0.579 0.582

3 0.231 0.235 0.236 0.234

4 0.195 0.194 0.198 0.024

Cond (.K) 1.90 1.93 1.88 5.24

Calculated Initial Units

Ni (True - 1.0) 1.034 1.018 0.995 1.032

Cu (True = 1.0) 1.015 1.002 0.962 1.001

Co (True - 1.0) 1.032 1.014 0.989 1.014

Cr (True - 0.0) 0.018 0.006 0.015 0.005

Average Absolute Z Error * 3.30 1.33 2.30 1.73

Standard Error Estimate ** 3.0 1.4 2.5 2.0

SAverage Absolute % Error - 100.0 x XITrue-Calculated
E(initial amounts)

•* Standard Error Estimate - [(TrueCalculated) 1/2t 100.0Niiilamounts)Zj x10.
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TABLE VII

Error Analysis According to Equation 45

Method Wavelengths Coefficients of err (AN)* Coefficients of err (A)**

TDC-GSAM 11, 12w 13, x5  3.42, 3.42, 3.42, 3.42 0.54, 0.90, 0.70, 0.78

IDC-GSAH X1, X2, x3, x5  1.02, 1.04, 1.03, 1.04 0.51, 0.51, 0.50, 0.51

PGSAM X1, A2, x3, A5 1.0, 1.0, 1.0, 1.0 0.18, 0.18, 0.18, 0.18

IDC-GSAM 11 , x3, x4, x5  1.02, 1.03, 1.04, 1.04 0.50, 0.50, 0.50, 0.50

* [cond (W) + cond (W)2  h2 I
11 ANII I kil

II Aq II
** [cond (W) ]AI NI II kil
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